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Abstract 

Implementation of biomarkers in sepsis and septic shock in emergency situations, remains highly challenging. This 
viewpoint arose from a public–private 3-day workshop aiming to facilitate the transition of sepsis biomarkers into clin‑
ical practice. The authors consist of international academic researchers and clinician-scientists and industry experts 
who gathered (i) to identify current obstacles impeding biomarker research in sepsis, (ii) to outline the important 
milestones of the critical path of biomarker development and (iii) to discuss novel avenues in biomarker discovery 
and implementation. To define more appropriately the potential place of biomarkers in sepsis, a better understanding 
of sepsis pathophysiology is mandatory, in particular the sepsis patient’s trajectory from the early inflammatory onset 
to the late persisting immunosuppression phase. This time-varying host response urges to develop time-resolved test 
to characterize persistence of immunological dysfunctions. Furthermore, age-related difference has to be considered 
between adult and paediatric septic patients. In this context, numerous barriers to biomarker adoption in practice, 
such as lack of consensus about diagnostic performances, the absence of strict recommendations for sepsis bio‑
marker development, cost and resources implications, methodological validation challenges or limited awareness 
and education have been identified. Biomarker-guided interventions for sepsis to identify patients that would benefit 
more from therapy, such as sTREM-1-guided Nangibotide treatment or Adrenomedullin-guided Enibarcimab treat‑
ment, appear promising but require further evaluation. Artificial intelligence also has great potential in the sepsis 
biomarker discovery field through capability to analyse high volume complex data and identify complex multipara‑
metric patient endotypes or trajectories. To conclude, biomarker development in sepsis requires (i) a comprehensive 
and multidisciplinary approach employing the most advanced analytical tools, (ii) the creation of a platform that col‑
laboratively merges scientific and commercial needs and (iii) the support of an expedited regulatory approval process.
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Graphical Abstract
 Conceptional approach to sepsis biomarker development.ED: emergency department; ICU: intensive care unit; PICU: 
paediatric intensive care unit

Background
A biomarker is described as “a defined characteristic that 
is measured as an indicator of normal biological pro-
cesses, pathogenic processes, or responses to an expo-
sure or intervention, including therapeutic interventions”. 
This definition is supported by the FDA and the NIH and 
is used in the Biomarkers, Endpoints, and other Tools 
(BEST) [1]. This encompasses molecular, histologic, radi-
ographic, or physiologic characteristics.

The development of biomarkers in the life-threatening 
context of sepsis is made difficult by several constraints. 
First, the development of a clinically useful sepsis bio-
marker requires multiple steps beyond finding an asso-
ciation between a particular molecule and a clinical 
state or outcome. Second, no clear roadmap exists for 
establishing how a biomarker should be approved for 
use in critically ill patients. Third, the definition of sep-
sis as a dysregulated host response to infection encom-
passes multiple heterogeneous subgroups in both adult 
and paediatric populations, therefore consistent bio-
marker-outcome relationships must be established while 
addressing the case-mix of septic patients. Further chal-
lenges in biomarker discovery include that more than one 

biomarker for pathways recognized to play a major role 
in sepsis pathophysiology is likely to be discovered, and 
the timing of intervention and targeted subgroup most 
likely to benefit must be defined for each. Interdiscipli-
nary collaboration is crucial for biomarker adoption. It 
facilitates the integration of diverse expertise, fostering 
a comprehensive understanding of biomarkers’ multifac-
eted nature. However, it also presents a significant bar-
rier due to the complexity of coordinating efforts across 
different disciplines. The lack of a common language 
and understanding can hinder effective communication 
and consensus-building, which could hamper successful 
validation and implementation of biomarkers in clinical 
practice.

To address this and foster interdisciplinary exchanges, 
the Institut Merieux organized a three-day meeting held 
November 27–29, 2023 and titled: “An unmet sepsis 
challenge: facilitating the biomarker transition to clini-
cal practice” in Annecy, France. It involved stakeholders 
from the private and public sectors working on sepsis 
biomarkers research and innovation. The present review 
addresses many of the topics discussed and biomarker 
development strategies proposed during this meeting, 
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which could help realising the full potential of sepsis bio-
markers in improving patient care and outcomes.”. It dis-
cusses the stepwise development of sepsis biomarkers in 
the context of commercial development and marketing. 
Such a developmental process requires multiple inter-
connected steps beyond establishment of an association 
between a particular molecule and a clinical state and/or 
outcome. Finally, we propose a set of available solutions 
supported by several short-/long-term goals. A coordi-
nated implementation of the above elements outlines 
a framework for streamlining biomarker research and 
application.

The challenge: What is the place for biomarkers 
in sepsis?
This difficult question highlights both the current status 
of existing biomarkers and future biomarkers emerging 
from basic and translational research. Identification of 
future biomarkers will be facilitated by the rapid prolifer-
ation of cellular and molecular knowledge on the patho-
physiology of sepsis facilitated by advances in "omics" 
technologies. In the last decade, several concepts have 
gained attraction in sepsis research: the essential role of 
the host response in sepsis severity and outcome [2]; the 
dynamic nature of the host immune response with oscil-
lating and crossing waves of pro- and anti-inflammatory 
biomarker profiles [3, 4]; and the constant balance of 
the host response between resistance and tolerance. As 
genes underlying host susceptibility for sepsis are identi-
fied in broad genome studies [5, 6], the functionality of 
the genes (transcriptomic) and their protein expression 
(proteomic) is now being interrogated [7–11]. Nota-
bly, gene expression candidate biomarkers were shown 
to outperform traditional, advocated protein biomark-
ers, particularly distinguishing between differing infec-
tious aetiologies [12, 13], and COVID-19 [14]. A more 
recent investigation has also highlighted the potential 
diagnostic value of integrating host transcriptomics and 
plasma metagenomics for sepsis diagnosis [15]. Single 
cell transcriptomics is also emerging as a more holistic 
tool to discovering sepsis biomarkers by defining func-
tional cellular states [8, 16]. Moreover, it is essential to 
integrate the influence of environmental conditions (i.e. 
exposome), the presence of chronic inflammation and 
ageing, and the respective development and senescence 
of the immune system in young children and the elderly, 
respectively [17, 18]

Sepsis clinical characterization and outcome prediction 
need more than clinical parameters and scores across 
heterogeneous populations. The global failure of tri-
als testing one molecule interfering with different host 
response pathways, suggests that underlying mechanisms 
for sepsis are complex and must be better elucidated. 

Interest is growing for studying sepsis subtypes (aka sub-
phenotypes, subgroups), to characterize the human host 
response, with the aim of identifying targeted therapies 
for use in patients who will benefit [19, 20]. The dem-
onstrated time variations of host response to infection 
also imposes more than biomarker measurement upon 
admission. Host response may be amenable to therapeu-
tic modulation according to the immune profile-related 
timing, virulence of pathogens and clinical subtypes.

Clinical needs around host biomarkers in sepsis
Sepsis is a catchment term for all patients with a sys-
temic dysregulated host response to severe infection, and 
therefore is heterogeneous in relation with predisposi-
tion, type of pathogens, and pre-sepsis conditions. The 
clinical trajectory of these patients and their outcomes is 
also highly variable. Despite this, numerous studies have 
shown that early recognition and intervention with flu-
ids, vasoactive agents and antimicrobials decreases sepsis 
morbidity and mortality [21–23]. Unfortunately, thera-
peutic management of sepsis remains limited outside of 
supportive care for varying levels of organ dysfunction. 
Many biomarkers have been associated with sepsis sever-
ity and outcomes, but their clinical utility for optimizing 
use of effective targeted therapies remains to be proven. 
A detailed roadmap for determining when a sepsis bio-
marker is ready for clinical use is needed for moving the 
field forward, and it must address the challenges outlined 
above (Table 1).

In the context of developing laboratory biomarkers for 
sepsis based on the host response, the serial timeframe 
for clinical management can be broadly categorized into 
three settings: (i) arrival at the emergency department 
(ED), (ii) the early phase of the stay in intensive care unit 
(ICU), and (iii) during prolonged stay in ICU. Biomarker 
needs in these settings differ. In the ED, an objective of 
diagnostic biomarkers is to distinguish those patients 
without bacterial sepsis for whom it is safe to withhold 
antibiotics, and for prognostic biomarkers for triage 
of patients at risk of deteriorating and developing life-
threatening organ dysfunction requiring escalation to a 
higher level of care. In the early phase of ICU manage-
ment, biomarkers are often used to assess the trajectory 
of sepsis by tracking the severity of organ dysfunction. 
While organ dysfunction biomarkers are not per se indi-
cators of sepsis, they must be an integral element of the 
patient monitoring profiles; sepsis affects parenchymal 
organs such as kidney, heart and liver [24] while the 
SOFA and Phoenix Sepsis Score-based readouts are at 
the centre of defining sepsis in both adult [25] and pae-
diatric [26] populations. In both the ED and early phase 
of ICU management, a predictive biomarker could be 
used to identify patients that may benefit from a targeted 
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treatment, facilitating rapid initiation with the aim of 
hastening recovery. Finally, during the prolonged stay 
in ICU, biomarkers may aid in prevention proposing to 
stimulate immunity or to early diagnose and treat sec-
ondary infections to minimize their harm (Fig. 1).

In the ED, rapid decision-making is crucial to assess 
ongoing infections and the risk of progression to life-
threatening organ dysfunction and death. Differentiat-
ing between viral and bacterial infections is important to 
limit unnecessary antimicrobial treatments. Current tests 
such as procalcitonin (PCT), C-reactive protein (CRP) 
alone or combined with TRAIL and IP-10 [27] have limi-
tations in accurately identifying bacterial or viral infec-
tions. Moreover, there are no approved tests for specific 

pathogen-associated biomarkers that could specify type/
genre of the invading pathogen and optimize antibiotic 
treatment. There has been a robust growth of genomic/
molecular methodologies that are capable of precise 
detection of bacterial RNA/DNA in the body fluids [28]. 
These approaches display high sensitivity, but their clini-
cal utility is typically hindered by low/varying specificity. 
However, this field holds promise and e.g., recent SUS-
PECTS (suppression PCR-based selective enrichment 
sequencing) diagnostic platform was able to detect eight 
different (most common) sepsis-causative pathogens 
[29]. Research has yet to definitively exclude bacterial or 
viral infection within a timeframe to safely implement a 
therapeutic strategy. Therefore, a short time to result is 

Table 1  Key Future Directions and Needs in Sepsis Biomarker Research

Direction Justification

Multi-Marker/Source Approach A panel of biomarkers that reflect different aspects of the immune response, organ dysfunction, and micro‑
bial presence provides a more comprehensive understanding of sepsis phenotype and improves diagnostic 
accuracy

Dynamic Monitoring Sepsis rapidly progresses through distinct phases with varying disease manifestations. Biomarkers that cap‑
ture these dynamical changes will enable more specific interventions and assessment of treatment efficacy 
over time

Use of Artificial Intelligence Analysis of Big Data originating from various biological sources and capturing various sepsis phenotypes 
provides multitude diagnostic and predictive permutations. Use of AI will enable selection of the most 
accurate/reliable biomarker algorithms

Validation and Reproducibility Robust biomarker validation ensures their superior reliability and reproducibility across diverse patient 
populations. Independent studies based on multicentre collaborations will strengthen the utility of identi‑
fied biomarkers

Collaboration and Data Sharing Collaborative efforts among researchers, clinicians, and industry stakeholders enable the pooling 
of resources, expertise, and data. Open sharing of information accelerates biomarker development and vali‑
dation, ultimately benefiting patient care

Unified Regulatory Assessment/Approval Meeting regulatory standards is a critical step in biomarker development. A unified assessment and approval 
process of biomarkers by various national regulatory agencies will exaccelate clinical implementation 
while maintaining uniform safety, efficacy, and quality criteria

Fig. 1  Biomarkers in the clinical management timeframe: key requirements & clinical goals. ED emergency department; ICU intensive care unit
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an important prerequisite in this setting. It is also use-
ful to consider endpoints that could help adapt and nar-
row treatment, especially using tests which are faster and 
more efficient than conventional microbiology to guide 
antibiotic de-escalation.

Due to early recognition of sepsis and improved man-
agement, the patients surviving the early phase of sep-
sis remain at risk of secondary ICU-acquired infections, 
which are associated with increased mortality, ICU 
readmissions, longer ICU stay, and long-term sequelae. 
These infections are linked with biological markers of 
inflammation, coagulopathy and endothelium damage 
(especially robust in COVID-19), metabolic and immune 
dysfunction [30–32]. Therefore, it is of pivotal interest to 
develop multiparametric biomarkers to identify patients 
at risk of developing ICU-acquired infections or more 
specific organ failures and to subgroup patients more 
likely to respond to treatments at different time points. 
The development of theragnostic biomarkers that pro-
vide relevant information on the underlying mechanism 
is strongly recommended.

Age‑related difference in sepsis must be considered
The bulk of the existing sepsis literature focuses on 
patients in their 50’s and 60’s. Sepsis studies in the very 
young and the very old are more limited but important to 
consider given the incidence of sepsis in early life, mostly 
in children under the age of five years [33]. Prematurity 
and low birth weight are major risk factors for poor sep-
sis outcomes in the neonatal period. The presence of co-
morbidities is generally lower in children compared to 
adults however, survival rates have markedly increased 
for babies born prematurely, with genetic-metabolic dis-
orders or with congenital malformations, and for children 
with oncologic, respiratory, cardiac, and neuromuscu-
lar disorders. These children now comprise a significant 
proportion of septic paediatric patients hospitalized for 
febrile illness and life-threatening infection [34, 35].

Primary immunodeficiencies, though rare, also emerge 
during childhood, sometimes presenting as severe sepsis 
[36].

Although sepsis is common in children, less than 1% 
of young patients evaluated for infection in the ED will 
develop life-threatening sepsis [37]. The immune system 
of children differs from adults, and evolves over time, 
influenced by exposure to pathogens and vaccines. The 
interferon response to pathogens becomes robust early 
in life, while the humoral immune response and the anti-
genic repertoire of T cells increase during childhood 
reaching adult levels during late adolescence [38]. Early-
onset changes in inflammatory, endocrinologic, and 
metabolic pathways in septic patients are similar in chil-
dren and adults [39], however, there is a wide variation in 

physiology between the neonatal to late adolescent phase 
of childhood. In part, this is because most children have 
healthy hearts that tolerate high levels of tachycardia, a 
nonspecific response to stress. This response enables chil-
dren to initially maintain blood pressure in septic shock. 
However, once this compensatory response is overcome, 
infants and young children have lesser reserves to com-
pensate for serious illness and may rapidly decline, thus 
shortening the window of opportunity for clinicians to 
recognize life-threatening infection. Therefore, appli-
cation of biomarker-based risk-stratification is crucial 
to identify these cases for early triage and intervention 
before clinical deterioration.

Clinically, determining the origin of a fever is of para-
mount importance in paediatrics. The same questions 
and challenges as with adult sepsis arise: is it bacterial, 
viral, parasitic, or non-infectious inflammatory? What 
is the specific pathogen? Which patients are at risk for 
deterioration? Although there is an important overlap of 
treatment signatures between children and adults, cut-
offs associated with specific diagnoses and outcomes 
likely differ. For instance, procalcitonin values are higher 
in the first 72 h of life than in childhood and adulthood 
[40–43]. Suppression of tumorigenicity 2 (ST2) protein 
concentrations increase in childhood, especially in males 
[44]. Pancreatic stone protein (PSP) concentrations vary 
across age, with lowest values in premature new-borns, 
followed by a rise through childhood to adolescence, 
and are lower in adults than children [45]. The above-
mentioned separation is also justified by the so-called 
“inflammaging” frequently present in aged patients [17, 
46]. A state of sterile, chronic, and low-grade inflamma-
tion combined with senescence of immune-inflammatory 
cells can markedly alter the diagnostic readouts. Multi-
plex host biomarker assays, including transcriptomic 
signatures, are being tested for use in distinguishing mul-
tiple diseases at once, including bacterial, viral, inflam-
matory, malaria, and immune status [https://​www.​diamo​
nds20​20.​eu] but the age factor must be accounted for in 
those characteristics. However, the assessment of actual 
medical value impacting paediatric treatments and out-
comes remains to be determined in randomised con-
trolled trials.

The immune system experiences substantial modifica-
tions in the very elderly (> 80 years old). Immunosenes-
cence commonly occurs, characterized by a decrease in 
immune cell counts or lymphopenia, and a diminished 
variety of variable receptor genes found on B and T cells 
with immunosuppressive cell proliferation together with 
release of anti-inflammatory cytokines [4, 17, 47]. Conse-
quently, older persons are rendered more susceptible to 
acute viral and bacterial infections due to an insufficient 
immune response [48]. Approximately 65% of adults aged 

https://www.diamonds2020.eu
https://www.diamonds2020.eu
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65 to 84  years suffer of at least two comorbidities [49], 
which are typically linked to the several distinct patho-
phenotypes such as inflammation/immune response, 
thrombosis/haemorrhage, fibrosis, proliferation and 
apoptosis/necrosis. [50]. In contrast, healthy young 
adults and adolescents have a similar robust immune 
repertoire to fight infection [51]. Even in healthy young 
individuals, the immune response in sepsis is dysregu-
lated and deleterious. A better understanding of these 
age-related differences across the lifespan is essential for 
developing sepsis biomarkers.

Time‑varying complexities of the host immune 
response in sepsis
The host immune response is precisely synchronized over 
time, with primary activation of sensory innate immune 
cells subsequent to pathogen recognition, followed by 
first order cytokine release, effector cell functions that 
include pathogen killing, and depending on the type of 
lymphocyte, activation of adaptive immune responses 
and resolution to homeostasis [52, 53]. Analyses of blood 
samples obtained from sepsis animals and patients have 
revealed the coexistence of two major arms of the host 
immune response, including inflammatory and immu-
nosuppressive events [54–56]. An optimal immune 
response can be defined as a balance between efficient 
pathogen clearance and an acceptable level of immuno-
pathology. Tolerance mechanisms limit the tissue damage 
induced by pathogens, and immunopathology [57] allows 
for the maintenance of a greater magnitude and duration 
of the immune response. Although some mechanisms 
regulating immunopathology tolerance and disease tol-
erance are functionally related, these two phenomena 
are clearly distinct. Tolerance refers to the mechanisms 
that render cells, tissues, organs, or organisms tolerant 
to deleterious stimulators that would otherwise be more 
destructive. This protection mainly depends on cellu-
lar metabolic reprogramming, which varies in time and 
space, using distinct gene expression programs and dif-
ferent metabolic programs. The processes for resistance 
(anabolic metabolism) require large amounts of energy 
characterized by an increase of the aerobic glycolysis 
(known as a Warburg effect) associated with inhibition 
of catabolism pathways of oxidative phosphorylation 
[58]. The balance between resistance (anabolic) and tol-
erance (catabolic) processes is controlled by the mam-
malian target of rapamycin (mTOR) [59]. Inflammatory 
signals inhibit the mTOR pathway and block oxidative 
phosphorylation by stimulating aerobic glycolysis. Tol-
erance mechanisms include diverse processes that act 
at the tissue and cellular levels, such as activation of the 
HPA axis, fatty acid oxidation, and IL-10 and IL-4 signal-
ling [58].While an overwhelming inflammatory response 

is typically associated with increased acute mortality, sus-
tained immune suppression is associated with the occur-
rence of secondary infections and late mortality [60]. It 
has been demonstrated that features of both phenom-
ena (i.e. of hyperinflammation and immunosuppression) 
occur simultaneously in patients in sepsis [2, 20, 61], and 
their dynamic interplay defines an ultimate immune-
inflammatory status of a given patient.

It is of paramount importance to develop time-resolved 
tests for diagnosing and assessing the persistence of these 
major immune phenomena to guide use of specific treat-
ment strategies, including immunomodulatory drugs. 
To do so, several factors must be incorporated. First, 
we need to consider the existence of both quantitative 
and functional compartmentalization of the immune 
response, with significant variations over time and 
between organs [61]. Indeed, in a state of homeostasis, 
the number and nature of immune cells vary greatly from 
one organ to another [62–64]. Similarly, the functional 
response of immune cells to infection varies in intensity 
and nature from organ to organ. Second, most biological 
investigations are carried out on peripheral circulating 
blood due to its ease of accessibility, and the influence of 
this limitation should be considered in the development 
of biomarkers for diagnostic and/or risk stratification 
strategies.

In addition, biomarker research traditionally has con-
centrated on measuring single time points, predomi-
nantly on ICU admission in the context of sepsis. This 
approach runs the risk of overlooking important changes 
and patterns in the levels of biomarkers that could offer 
valuable insights into causality and response to treat-
ment. Repeated measurements, which entail gathering 
data at several time intervals, provide a more thorough 
perspective on host responses. For example, changes 
in expression of key inflammatory proteins and genes 
S100A8 and S100A12 were indirectly correlated to those 
of CD74 and HLA-DR over the course of recovery from 
septic shock [65]. Serial monitoring of biomarkers can 
provide valuable insights into patient reactions to medi-
cations, and disease progression [66]. Moreover, serial 
measurements may provide opportunities to modify 
the duration of antibiotic therapy thereby safely limit-
ing a patients’ exposure to broad-spectrum antibiotics. 
In the ongoing biomArker-guided Duration of Antibi-
otic treatment in hospitalized Patients with suspecTed 
Sepsis (ADAPT-Sepsis) trial [67], the aim is to deter-
mine if the duration of antibiotic treatment for sepsis 
patients can be safely decreased through the daily moni-
toring of PCT and CRP levels. Incorporating serial bio-
marker measurements requires the use of sophisticated 
statistical methods to handle the intricacies of longi-
tudinal data. Analytical strategies should address the 
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multi-collinearities in repeated measurements, address 
missing data appropriately, and include both within-sub-
ject and inter-subject variability in order to differentiate 
significant changes from random fluctuations. Statistical 
models that include mixed-effects models, time-series 
analysis, and machine learning algorithms can provide 
the needed framework to address these challenges.

Identified barriers to biomarkers adoption in sepsis
Despite significant progress in sepsis biomarker research, 
several barriers hinder the widespread adoption of the 
existing markers into clinical practice, which span scien-
tific, clinical, logistical, and regulatory aspects (Table 2). 
A major adoption barrier is the lack of evidence of the 
clinical utility of biomarkers in sepsis, for either diagno-
sis, stratification or prognosis. There is a need for a more 
concerted clinical validation through high-performance 
(e.g. adaptive design) randomized clinical trials to assess 
their utility. International multi-centre trials [68–70] rap-
idly set up during the COVID-19 pandemic are examples 
to follow. Furthermore, these studies should be per-
formed in a real-world setting across different geographi-
cal/ethnic contexts, and need to be focused on specific 
patient cohorts with defined clinical syndromes rather 
than on entire populations covering highly heterogene-
ous sepsis patients. Incorporating cohorts established 
in lower and/or middle-income areas will significantly 
enhance our goals of resolving sepsis heterogeneity and 
establishing precision medicine in sepsis. A too simplis-
tic biomarker evaluation across all septic patients with 
a view to demonstrate their broadest possible value may 
lead to repeated failures [71], thus hampering biomarker 
assessment in the most relevant patient subsets [72].

From an economic standpoint, the level of evidence 
of the cost effectiveness of using existing biomarkers 
is currently low and mainly restricted to the value of 
PCT to guide antimicrobial discontinuation [73, 74]. 
Robust health economics and outcome research could 
help determine how a given biomarker could bring in 

the most benefits through proper integration in exist-
ing diagnostic algorithms. Determinants of prescrib-
ing various biomarker-based tests and their effects on 
patient management and outcomes should also be con-
sidered. The evaluation must also identify factors lim-
iting adoption of those biomarkers, such as impact on 
organizational changes induced by the change of rou-
tine practice.

Another key limiting factor is the currently used sep-
sis biomarker evaluation methodology. To date, there 
are no clear recommendations and/or guidelines defin-
ing the performance requirements for such tests apart 
from routine design and statistical requirements by the 
national regulatory agencies. Given the complexity of 
sepsis (i.e. a “sepsis syndrome” is an umbrella-descrip-
tor embracing dozens of infection-driven phenotypes), 
the performance requirements for methodological eval-
uation of biomarkers in sepsis are likely to vary accord-
ing to the outcome considered and the population 
assessed. For instance, ruling out sepsis is a relevant 
clinical question at early disease stage requiring a focus 
on the biomarker negative predictive value (NPV). 
Along the same line, one could consider not account-
ing for non-predictable complications (e.g. unexpected 
haemorrhagic shock following catheter insertion in a 
septic shock patient). Thus, creation of new blueprints 
tailored for methodologic evaluation of sepsis bio-
markers is warranted to enhance efficacy of markers 
(Table 2).

Finally, a significant barrier to the effective use of bio-
markers in sepsis clinical practice is the absence of uni-
versally accepted management guidelines and the lack 
of consensus. Whereas numerous international initia-
tives have been performed [75–77], several challenges 
remain. Primarily, the landscape of potential sepsis 
biomarkers is vast, each possessing unique advan-
tages and limitations. The intricate task of determining 
which biomarkers to incorporate into guidelines, and 
their subsequent interpretation, necessitates compre-
hensive research and clinical validation. Secondly, the 
absence of international collaboration in this domain is 
evident. Diverse geographical regions employ distinct 
methodologies for sepsis management, often lacking 
synchrony, thereby complicating the formulation of 
universally applicable guidelines. Lastly, the scarcity of 
resources and funding for such initiatives is a signifi-
cant barrier. The development and implementation of 
international guidelines is a resource-intensive process, 
and many institutions lack the requisite resources for 
its execution. This underscores the need for concerted 
efforts in resource mobilization and international col-
laboration to advance sepsis management.

Table 2  The most relevant barriers in adoption of the available 
sepsis biomarkers

Heterogeneity of Sepsis Phenotypes

Lack of Consensus on Definitions

Limited Specificity/Sensitivity

Cost and Resources Implications

Methodologic Validation Challenges

Regulatory Hurdles

Integration with Clinical Decision-Making

Interdisciplinary Collaboration

Limited Awareness and Education
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Biomarkers guiding clinical decision in other fields: 
lessons learned from oncology
Cancer and sepsis are heterogeneous pathologies that 
involve multiple and complex mechanisms, for which 
a “one size fits all” approach is not sufficient. The evo-
lution of oncology treatments has paralleled the devel-
opment of molecular biomarkers enabling patients to 
be stratified according to their oncogenic pathways. 
Mutations of human epidermal growth factor receptor 
2 (HER2) in breast cancer, anaplastic lymphoma kinase 
(ALK) in non-small cell lung cancer and v-raf murine 
sarcoma viral oncogene homolog B1 (BRAF) in mela-
noma constitute successful examples of how distinct 
pathophysiological malignancy traits can be character-
ized. These and other molecular stratification markers 
have emerged as a pivotal strategy in guiding the choice 
of treatment [78, 79]. In oncology, several biomarkers, 
like genetic mutations or chromosome alterations asso-
ciated with a particular oncogenic pathway, are binary, 
i.e. they allow clear distinction between patients car-
rying or not these alterations. This dichotomic feature 
rarely applies to sepsis circulating biomarkers.

Moreover, the time required to assess the presence 
or expression level of a given biomarker in oncology 
can be several days, which is unthinkable in the case 
of a serious infection requiring extremely rapid man-
agement in the initial sepsis phase. However, there is 
encouraging work in sepsis, comparable to the enrich-
ment strategies of certain immune or targeted thera-
pies in oncology, based on evaluation of biomarkers, 
for example sTREM-1, bio-adrenomedullin, or mono-
cyte expression of HLA-DR associated with particu-
lar pathophysiological mechanisms occurring in some 
sepsis patients [80–82]. One area of development in 
oncology which could inspire approaches to sepsis is 
that of quantitative evaluation of mutations (tumour 
mutational burden), which correlate with efficacy of 
some immunotherapies or metabolic control of cellular 
growth. Beyond their combination and level of expres-
sion, it would be useful to define a set of biomarkers 
assessing pathways involved in sepsis, and whether 
their multimodal appraisal is of interest.

Management of cancer patients undergoing immu-
nosuppressive therapy and at risk of developing a seri-
ous infection or cancer recidivism is another topic of 
shared interest. Early identification of immunosup-
pressed patients could improve their prognosis. In 
addition, since these patients are very often excluded 
from interventional studies in sepsis, setting up dedi-
cated studies would improve the level of evidence for 
most current and planned sepsis therapies.

The promise of diagnostic‑guided interventions
In the last three decades, beside transient approval of 
activated protein C [83], almost all trials that have tested 
innovative sepsis drugs have failed despite numerous 
promising preclinical data and early phase results. More 
recently, specific attention has been given to biomarker-
guided intervention to select more appropriately patients 
[84] with a rigorous standardized methodology [85]. The 
COVID-19 pandemic conditions offered a unique oppor-
tunity to rapidly obtain large cohorts with sequential 
blood samples for biomarker measurements to propose 
appropriate drugs [86]. The classification of the patient 
cohorts in the sub-phenotype for immune profile guided 
the use of immunomodulatory drugs providing “person-
alized immunotherapy” [87]. If most of the major trials 
during COVID-19 have missed the opportunity to sam-
ple blood for pragmatic reasons during a frenetic period, 
some bring important results to adequately guide the use 
of tocilizumab and anakinra. Following this COVID-19 
experience, European groups have developed trials in 
sepsis using a similar strategy to test immunomodula-
tory drugs based on longitudinal measurements of bio-
markers (GM-CSF, presepsin, HLA-DR, etc.).This type 
of biomarker-guided approach will open the door to per-
sonalized therapeutic strategies taking into consideration 
the pathological process, the disease stage and individual 
patient characteristics [88]. In addition, biomarkers can 
help predict response to treatment but can also be cor-
related with outcome which gives a strong push for pre-
dictive and prognostic enrichment [89]. These innovative 
approaches also raised the interest of developing new 
clinical endpoints besides all-cause mortality at Day-28 
for biomarker-guided personalized trials.

Several candidate biomarkers have been investigated 
and advocated for sepsis diagnosis and clinical manage-
ment. Classically, procalcitonin (PCT) and C-reactive 
protein (CRP) have been prominent targets as candi-
date sepsis biomarkers. CRP, a well-known and relatively 
inexpensive inflammatory biomarker, has been used 
consistently in the context of adult and neonatal sepsis 
diagnosis [90–92]. Elevated PCT levels were shown to be 
associated with bacterial sepsis, organ dysfunction, and 
mortality, suggesting a role as a diagnostic and/or prog-
nostic indicator [93, 94]. Moreover, randomized clinical 
trials demonstrated the effectiveness of monitoring PCT 
levels in antimicrobial stewardship and associated com-
plications [95]. Notably, PCT has been highlighted as 
potential standout biomarker for distinguishing between 
viral and bacterial sepsis [96]. However, PCT (and CRP) 
levels gathered upon admission may not be helpful in 
identifying bacterial co-infection among patients with 
COVID-19 pneumonia [97]. Presepsin appears promis-
ing in early-onset sepsis diagnosis in adult or neonatal 
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sepsis, since detectable levels increase early during the 
host response to infection [98–102]. Circulating nucle-
osomes have been identified as potential predictive 
biomarkers for sepsis and sepsis-associated organ dys-
function, offering diagnostic and prognostic value [103]. 
Studies have also raised concerns regarding the specific-
ity and sensitivity of candidate biomarkers. Of note, the 
overarching message is that candidate biomarkers may 
not perform reliably as stand-alone sepsis biomarkers. 
For example, the use of stand-alone CRP or PCT remains 
uncertain [93, 104]. However, in combination with other 
markers and routine clinical scores, candidate biomark-
ers may assist in the early prediction of sepsis, for exam-
ple PCT in combination with qSOFA [105].

When looking into the sepsis drug development pipe-
line, two drugs to be described briefly below have already 
integrated these criteria and are currently under evalu-
ation, aiming for regulatory approval: Nangibotide and 
Enibarcimab are two examples of biomarker-guided ther-
agnostic treatments of septic shock in sepsis that could 
be the first novel therapies available soon for the treat-
ment of patients.

First example is Nangibotide, a synthetic TREM-1 
antagonistic peptide that inhibits the TREM-1 recep-
tor [106]. In phase 2 trial, Nangibotide showed benefit 
in the high sTREM-1 group of patients with septic shock 
based on predefined SOFA endpoints [80]. Nangibot-
ide currently enters clinical phase 3. Second example is 
Adrenomedullin; its high circulating concentration cor-
relates with mortality in sepsis and septic shock [107]. 
Recently, the AdrenOSS-2 phase 2a trial guided by 
elevated Adrenomedullin suggested benefit in patients 
treated with adrenomedullin antibody, Enibarcimab 
(previously adrecizumab) [81]. Interestingly, when add-
ing another biomarker (DPP3) to the Adrenomedullin, a 
significant mortality signal was detected [108]. Beyond 
these two examples of biomarker-guided specific thera-
pies targeting specific pathophysiological pathways, 
biomarkers allowing assessment of the inflammatory/
immune status of sepsis patients (like HLA-DR) could be 
enrichment strategies for any targeted or non-targeted 
interventions aiming at either boosting or suppressing 
immune responses. Biomarkers could also guide inter-
ventions to prevent or treat sepsis complications. In 
this regard, recent trials have shown that, in a selection 
of patients undergoing cardiac surgery, using blood bio-
markers associated with high risk for acute kidney injury 
(AKI) (like TIMP-2) reduced the rate and severity of AKI 
[109, 110]. This warrants future clinical evaluation of 
biomarker-guided approaches to improve management 
of septic AKI, using TIMP-2 or septic AKI endotypes or 
sub-phenotypes [111].

Even if many drugs appear promising and could be 
available at the bedside in the coming years, as seen in 
cancer, it remains to be seen whether a treatment guided 
by a single biomarker or more complex biomarker sets 
is more advantageous in reducing sepsis morbidity and 
mortality.

Challenges in developing diagnostic‑guided 
treatments
Sepsis heterogeneity has been identified as one of the 
main drivers for past clinical trial failures [112]. Stud-
ies have typically applied an ensemble of approaches, for 
example, defining baseline ranges from diverse cohorts, 
statistical model adjustments that account for baseline 
characteristics, sophisticated normalization procedures 
that accommodate for confounders, fitting multivariate 
models and machine learning algorithms to detect com-
plicated patterns [7, 113–117]. The use of biomarkers 
for the selection of the patient population most likely to 
benefit from the therapy is currently considered the most 
promising approach [118]. It is also of utmost importance 
to understand the molecular mechanisms that drive 
alterations in biomarkers by employing experimental 
models to validate their significance in relation to the dis-
ease condition [13, 20].

Diagnostic-guided treatment approaches require the 
parallel development of a diagnostic assay and a thera-
peutic agent, which are different in several aspects. The 
processes require largely different technological skills 
and scientific knowledge and importantly, distinct devel-
opment and registration pathways need to be followed 
and aligned. In the EU, the two components are regu-
lated by different bodies. Most innovative therapeutics 
are approved centrally for all European countries by the 
European Medicines Agency (EMA), while diagnostics 
are regulated in the decentralized manner by “Notified 
Bodies”.

Clinical trials requiring a diagnostic test for patient 
selection are also much more complex. Diagnostic tests 
and devices need to be developed prior to the first clini-
cal trial. As sepsis patients need to be screened in the 
ICUs also during nights and weekends, the diagnostic 
test must be quick and user friendly in addition to ful-
filling the mandatory technical and analytical validation 
criteria. At this development stage, point-of-care tests are 
probably desired, allowing for testing directly in the ICU.

When it comes to commercialization of the drug, bio-
marker testing in the hospital’s central lab is usually 
desired to facilitate seamless integration into the hospi-
tal’s treatment procedures for sepsis. This requires tran-
sitioning of the testing method to other platforms to be 
compatible with established test systems.
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Overall, the multifaceted nature of a combined devel-
opment for a therapeutic along with a companion diag-
nostic demands a comprehensive and adaptive approach 
to overcome the obstacles of bringing personalized medi-
cines in acute care especially for the treatment of septic 
shock to success.

The regulatory standpoint
From a regulatory standpoint, there are no recommen-
dations dedicated to the development of biomarkers in 
sepsis. Even though this allow creativity and encourages 
innovative approaches, it is also a barrier to research and 
development. The lack of consensus regarding the level 
of statistical performances, such as specificity or negative 
predictive value, to be achieved in this setting is a com-
mon topic of discussion. Indeed, the definition of optimal 
thresholds is frequently left to the discretion of experts 
and to the clinical situation. The absence of performance 
targets to be reached during the development phase of 
diagnostic strategies can prolong delays. However, itera-
tive exchanges with regulatory agencies during the devel-
opment process make it possible to identify the desired 
targets, but this requires the ability to mobilize important 
resources. Recommendations issued by the Foundation 
for Innovative Diagnostics (FIND) in 2016 for biomarkers 
aimed at distinguishing bacterial from viral infections, 
could be a good starting point for the development of 
such guidelines [119, 120]. Notably, there are important 
differences between the FDA and the EMA in terms of 
exchanges, guidance and complexity in regulatory pro-
cesses. Any discussion on biomarker development should 
also consider ethical aspects, such as patient consent 
and data privacy, especially when dealing with genetic 
markers. Finally, standardized adjudication protocols 
endorsed by scientific societies could probably be use-
ful. Indeed, setting up clinical validation studies is costly 
and time-consuming, and requires a clear and consistent 
vision of inclusion and exclusion criteria.

Artificial intelligence as panacea?
The advent of artificial intelligence (AI) and machine 
learning (ML) algorithms has ushered in a new era in 
sepsis biomarker development, potentially offering 
unprecedented opportunities for innovation and discov-
ery [121]. The integration of AI and ML into biomarker 
research holds immense promise, driven by their ability 
to combine biological, clinical, and digital data streams 
to predict patient outcomes with unparalleled accuracy 
and precision [122]. Central to the transformative poten-
tial of AI and ML is their ability to refine and prioritize 
candidate biomarkers for inclusion in predictive models. 
The critical task of feature selection for biomarker dis-
covery is underscored by the increasing size of databases 

and electronic records, together with advancements in 
data acquisition and computational analysis. However, 
the exponential growth of data also amplifies the risk of 
overfitting models, wherein the model becomes too finely 
tuned to the training data, leading to diminished repro-
ducibility and challenges in platform transferability.

To circumvent these challenges, it is important to limit 
the number of features in models and to identify the 
“minimal signature” [123]. With this aim, recent work 
suggests the value of large language models (LLM) to 
prioritize candidate genes for inclusion in models [124]. 
Ultimately this speeds up the time needed to analyse 
the characteristics of the features included on the basis 
of pre-existing data, without having to dispense with 
secondary human validation. Furthermore, the con-
cept of federated learning emerges as a viable solution 
to address privacy concerns and facilitate continuous 
machine learning progress. By decentralizing model 
training and allowing data to remain localized, federated 
learning not only enhances privacy but also promotes 
collaborative advancements in AI-driven biomarker 
development. Another proposal would be to consider 
sequential approaches, characterized by large-scale 
screening followed by targeted analyses on a smaller sub-
set of patients. This iterative methodology, ideally suited 
for immunological analyses, enables the identification of 
pertinent biomarkers for more specific tests among the 
vast landscape of data [125].

From a more technical standpoint, ensuring the suc-
cessful translation of sepsis biomarkers from discov-
ery to implementation platforms necessitates that ML 
algorithms effectively tackle the issue of performance 
loss. This discrepancy often arises due to discrepan-
cies between the discovery environment and real-world 
implementation settings. Therefore, it is crucial to con-
sider factors such as the detection chemistry of the 
implementation platform, as well as the genomic con-
text of the identified biomarkers [126]. Tailoring prese-
lected features to uncover signatures that align with the 
requirements of the end-point diagnostic test ensures 
optimal biomarker translation for practical application. 
By addressing these challenges, researchers can maxi-
mize the translational potential of AI-driven biomarker 
discovery.

In essence, while the emergence of AI heralds a new 
era of possibilities in biomarker discovery, its true poten-
tial lies in its ability to navigate the complexities of 
data integration, model optimization, and translational 
research. As researchers continue to leverage the power 
of AI in the pursuit of novel sepsis biomarkers, collabo-
rative efforts and innovative methodologies will pave 
the way towards transformative breakthroughs in clini-
cal practice. AI is not a panacea, but a tool to accelerate 
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biomarker discovery. Errors in algorithms can result in 
harm and inefficiency, and implicit biases in data sets 
used to train algorithms can entrench and even amplify 
existing problems [127].

Conclusions
Undoubtedly, the progress in sepsis biomarker research 
has been painstakingly slow and marred by countless fail-
ures. Yet, “It does not matter how slowly you go so long 
as you do not stop” (Confucius, 551–479 BC), thus, it is 
crucial that the research community should continue 
advancing sepsis biomarker development. In recent 
years, the field has undergone significant advancements, 
and several promising directions in biomarker research 
for sepsis are emerging.

While key focus of future biomarker research in sep-
sis appears to lie in the identification of novel biomark-
ers that can offer desired sensitivity and specificity, one 
should not dismiss a potential utility of the past “failed” 
biomarkers. A robust proliferation of molecular and cel-
lular markers [128, 129] (e.g., microRNAs, cell-free DNA) 
should not eclipse the need for re-testing of the old bio-
markers (e.g. IL-6, TNF). The latter must be performed in 
a coordinated manner, focusing on recognizing distinct 
clinical scenarios/endpoints/risks rather than a one-size-
fits-all diagnostic approach.

Intuitively, the future of sepsis biomarker research 
involves the development of multi-marker panels that 
can provide a more comprehensive and nuanced under-
standing of the disease. Such routine multi-marker pan-
els could mimic “liquid biopsies” successfully used in the 
cancer field [130]. Whenever feasible, such liquid biop-
sies should be supplemented by relatively simple tissue 
biopsies (e.g. muscle, fat, urine, regional venous blood 
vs systemic) and broncho-alveolar fluid (e.g. in pneu-
monias) to expand the desired diagnostic knowledge to 
other compartments beyond the peripheral blood. Sepsis 
is a complex syndrome with diverse clinical manifesta-
tions, and a single biomarker will never capture its full 
complexity but rather a defined but short-lived element 
of the sepsis pathophysiology. Various omics-based tech-
nologies provide additional analytical fuel for unravelling 
known and unknown but intricate molecular pathways 
underlying sepsis. Finally, there is an eminent place for 
AI-driven integration of those multiple biomarkers from 
liquid blood biopsies, tissues and routine clinical data. By 
rapidly defining various elements of sepsis pathophysi-
ology based on large-data integrative algorithms, AI has 
a realistic potential to aid medical personnel towards 
enhanced diagnostic accuracy, prognostic precision and 
eventually individualizing the treatment course of the 
patients.

As technology and understanding of sepsis patho-
physiology continue to evolve, these advancements in 
biomarker research are poised to revolutionize sepsis 
management, ultimately improving patient outcomes 
and reducing the burden of this life-threatening con-
dition. Biomarker development in sepsis requires 
(i) a comprehensive and multidisciplinary approach 
employing the most advanced analytical tools, (ii) the 
creation of a platform that collaboratively merges sci-
entific and commercial needs and (iii) the support of an 
expedited regulatory approval process. A merger of the 
above factors will collectively contribute to the trans-
lation of biomarker discoveries from the laboratory 
to impactful clinical applications, which will improve 
patient outcomes and quality of life.
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